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Abstract

This paper investigates buckling loads of columns with constant volume. The parabolic and sinusoidal tapers with solid

regular polygon cross-sections are adopted as the column taper. The differential equation governing the buckled shape of

such column is derived and solved for calculating the buckling loads. The clamped–clamped, clamped–hinged and

hinged–hinged ends constraints are considered in numerical examples. The buckling loads are presented as functions of

non-dimensional system parameters. The section ratios and buckling load parameters of the strongest columns are

reported.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Since columns are basic structural forms, their static and dynamic behaviors have been studied extensively.
In column problems, predicting the buckling loads is very important for structural design. The column
behavior under load depends on the cross-sectional shape, type of taper and the volume of the column [1,2].
Predicting buckling loads of non-prismatic columns, which have the same volume with specific length, are
especially attractive in the viewpoint of optimal design.

Since Lagrange attempted to determine the optimum shape for a column in 1773, many investigators have
studied the mechanical behavior of beams/columns with constant volume. Keller [3], Tadjbakhsh and Keller
[4], and Taylor [5] derived the shape of the strongest columns and their critical buckling loads. Here, the
strongest column was defined as the elastic column of a given length and volume which can carry the highest
axial load without buckling. Keller and Niordson [6] studied the tallest columns. The optimal structural design
under multiple eigenvalue constraints was investigated by Masur [7]. Stability experiments on the strongest
columns were conducted by Wilson et al. [8]. Barnes [9], and Cox and Overton [10] determined the shape of the
strongest column. Atanackovic and Simic [11] determined the optimal shape of a simply supported column
loaded by uniformly distributed follower type of load. Lee and Oh [12] investigated the elastica and buckling
load of simple tapered columns with constant volume.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Recent theories predict the optimal shapes for highest axial loads for columns. Although many numerical
results were presented in the literature, the configurations of the columns are very limited in various aspects.
For instance, circular cross-sectional shapes, linear column tapers, hinged–hinged end constraints were
considered in most previous work.

The main purpose of the present paper is to investigate the buckling loads of solid tapered columns with the
regular polygon cross-section and a constant volume. The differential equation governing the buckled shape of
the linear elastic column is derived by using the relationship between the natural frequencies and loads in free
vibration problems.

The governing equation is solved numerically by the Runge–Kutta method and determinant search method
combined with the Regula–Falsi method. The parabolic and sinusoidal tapers are chosen for the tapered
column. In the numerical examples, the clamped–clamped, clamped–hinged and hinged–hinged end
constraints are considered.

The buckling loads are presented as functions of non-dimensional system parameters. The section ratios and
buckling load parameters of the strongest columns are reported. Also, the effect of taper type on the buckling
load parameter is reported.

2. Column with constant volume

Shown in Fig. 1(a) is a solid tapered column with span length l and constant volume V. The cross-sectional
shape of the column is the regular polygon cross-section and its cross-sectional depth, which is varied with the
coordinate x, is expressed as h. Therefore, the column has a variable area and a variable moment of inertia of
area of cross-section expressed as A and I, respectively. The variation of depth h with x is defined in Fig. 1(b).
The depths of both ends (x ¼ 0 and l) and mid-span (x ¼ l=2) are h0 and hm, respectively. Here, a non-
dimensional parameter defined as section ratio n is defined as follows:

n ¼
hm

h0
. (1)

The cross-sectional properties A and I of the regular polygon cross-section with depth h are, respec-
tively [12],

A ¼
m

2
sin

p
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� �
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� �
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� �
1þ

1

3
tan2

p
m

� �� �
h4, (2,3)

where m is the integer number of sides of the regular polygon cross-section. It is clear that A and I converge to
ph2 and ph4=4, respectively, as m approaches N, i.e. the section becomes circular. Also, it is noted that every
h,A,I h

l
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Fig. 1. Column having regular polygon cross-section with constant volume and its variable cross-sectional depth.
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centroidal axis of a regular polygon cross-section is a principal axis and has the same moment of inertia,
expressed by Eq. (3).

Now, define the variable cross-sectional depth h shown in Fig. 1(a) and (b). In this study, the parabolic and
sinusoidal tapers are chosen for columns with variable depth h. For the parabolic taper, the function of
variable depth h through three points of (0, h0), (l/2, nh0) and (l, h0) in rectangular coordinates (x, h) is
determined as follows:

h ¼ h0 �4ðn� 1Þ
x

l

� �2
þ 4ðn� 1Þ

x

l

� �
þ 1

� �
; 0pxpl. (4)

The volume V of parabolic taper can now be calculated by using Eqs. (2) and (4). The result is

V ¼

Z l

0

Adx ¼ m sin
p
m

� �
cos

p
m

� �
bh2

0l; b ¼
1

15
ð8n2 þ 4nþ 3Þ. (5.1,5.2)

For the sinusoidal taper, the function of variable depth h and volume V are determined:

h ¼ h0 ðn� 1Þ sin
px

l

� �
þ 1

h i
; 0pxpl, (6)

V ¼

Z l

0

Adx ¼ m sin
p
m

� �
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p
m

� �
bh2

0l; b ¼
1

2
ðn� 1Þ2 þ

4

p
ðn� 1Þ þ 1. (7.1,7.2)

3. Governing equation

For deriving the differential equation of buckled shape of column, the free vibration problem of column is
introduced. Both ends of the column considered herein are supported by clamped or hinged ends.

The partial differential equation governing the free vibration of the column subjected to an axial
compressive load P is [13]

q2

qx2
EI

q2W ðx; tÞ

qx2

� �
þ rA

q2W ðx; tÞ
qt2

þ P
q2W ðx; tÞ

qx2
¼ 0, (8)

where E is Young’s modulus, r is mass density and W ðx; tÞ is the dynamic displacement.
The column is assumed to be in harmonic motion, or W ðx; tÞ ¼ wðxÞ sin ðotÞ. Here, o is the natural

frequency, t is time and wðxÞ is the amplitude, which is a function of x only.
Now, using equation of W ðx; tÞ ¼ wðxÞ sin ðotÞ with Eq. (8) gives the ordinary differential equation

governing free vibration of the tapered column with an axial compressive load P. The result is

EI
d4wðxÞ

dx4
þ 2E

dI

dx

d3wðxÞ

dx3
þ E

d2I

dx2
þ P

� �
d2wðxÞ

dx2
� rAo2wðxÞ ¼ 0. (9)

It is well known that the natural frequency o decreases as the compressive load P increases and the natural
frequency o vanishes when the compressive load P coincides with the critical loads Bi, where i is the mode
number of buckled shape. Once P reaches Bi, the column buckles in (x,w) plane and becomes to be static state.
Thus, substituting o ¼ 0 and P ¼ Bi into Eq. (9) gives the differential equation governing the buckled shape of
the column. The result is

EI
d4wðxÞ

dx4
þ 2E

dI

dx

d3wðxÞ

dx3
þ E

d2I

dx2
þ Bi

� �
d2wðxÞ

dx2
¼ 0. (10)

To facilitate the numerical studies and to obtain the most general results for this class of problem, the
following non-dimensional system variables are introduced:

x ¼
x

l
; Z ¼

w

l
; bi ¼

Bil
2

p2EIe

(11213)



ARTICLE IN PRESS
B.K. Lee et al. / Journal of Sound and Vibration 294 (2006) 381–387384
in which x and Z are normalized by column length l and bi is the critical load parameter. Also, Ie in Eq. (13) is
the moment of inertia of area of cross-section of a uniform column with circular cross-section whose volume is
V. Such Ie is determined easily as Ie ¼ V 2=ð4pl2Þ.

When Eq. (3) and each of dI=dx and d2I=dx2 obtained by differentiating Eq. (3) are substituted into Eq.
(10) and the non-dimensional forms of Eqs. (11)–(13) are used, the result is

d4Z

dx4
¼ a1

d3Z

dx3
þ ða2 þ a3biÞ

d2Z

dx2
. (14)

For parabolic tapers, the coefficients a12a3 in Eq. (14) are

a1 ¼ 32ðn� 1Þð2x� 1Þ
1

j
; a2 ¼ �32ðn� 1Þ2 28x2 � 28xþ 6�

1

n� 1

� �
1

j2
, (15.1,15.2)

a3 ¼ �
3pm tan ðp=mÞb2

3þ tan2 ðp=mÞ

1

j4
, (15.3)

where

j ¼ �4ðn� 1Þx2 þ 4ðn� 1Þxþ 1. (15.4)

And for sinusoidal tapers, the coefficients a12a3 in Eq. (14) are

a1 ¼ �8pðn� 1Þ cos ðpxÞ
1

j
; a2 ¼ 4p2ðn� 1Þ½sin ðpxÞj � 3ðn� 1Þcos2 ðpxÞ�

1

j2
, (16.1,16.2)

a3 ¼ �
3pm tan ðp=mÞb2

3þ tan2 ðp=mÞ

1

j4
, (16.3)

where

j ¼ ðn� 1Þ sin ðpxÞ þ 1. (16.4)

For clamped end, the non-dimensional boundary conditions are obtained as follows:

Z ¼ 0;
dZ
dx
¼ 0, (17,18)

which imply the displacement and rotation are zero.
For hinged end, the non-dimensional boundary conditions are obtained as follows:

Z ¼ 0;
d2Z

dx2
¼ 0, (19,20)

which imply the displacement and bending moment are zero.

4. Numerical examples and discussions

A FORTRAN computer program incorporating the above analysis was written to calculate the critical load
parameters bi for a given column geometry. The numerical methods described by Lee et al. [14], were used to
solve the differential equation (14), subjected to the end constraints selected from Eqs. (17), (18) or Eqs. (19),
(20). The Runge–Kutta method was used to integrate the differential equations and the determinant search
method combined with the Regula–Falsi method was used to determine the eigenvalues of bi.

Note that once a column buckles due to the first critical load B1, i.e. buckling load, the higher critical loads
Bi ði ¼ 2; 3; 4 . . .Þ only have the mathematical meaning in the real structural system. Therefore, the first
critical load parameters b1, namely buckling load parameters b1, are only calculated in the numerical examples
of this study.

The first numerical study is shown in Table 1 in which b1 of this study agree quite well with the reference
values. These results served to validate the analysis presented herein.
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Table 1

Comparisons of results between this study and references

Geometry This study References

n ¼ 2:32, circular cross-sectiona B1 ¼ 540 lbs B1 ¼ 550 lbs [8]

n ¼ 1:98, m ¼ 3 b b1 ¼ 1:572 b1 ¼ 1:574 [12]

n ¼ 1:98, m ¼ 4 b1 ¼ 1:362 b1 ¼ 1:362 [12]

n ¼ 1:98, m ¼ 5 b1 ¼ 1:322 b1 ¼ 1:323 [12]

n ¼ 1:98, m ¼ 1 b1 ¼ 1:300 b1 ¼ 1:301 [12]

am ¼ 1, V ¼ 9p=16 in3, l ¼ 15:44 in, E ¼ 10� 106 psi, sinusoidal taper and hinged–hinged end.
bParabolic taper and hinged–hinged end.
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Fig. 2. b1 versus n curves for parabolic taper with clamped–clamped end.
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Shown in Fig. 2 is the variation of b1 with section ratio n of clamped–clamped end for parabolic taper. All of
b1 with m ¼ 3; 4; 5 and N reach the peaks as the section ratio n is increased. The peak point of each curve
marked & represents the strongest column, which shows the largest buckling load parameter for a given set of
side number m, taper type and end constraint. For example, the buckling load parameter b1 and section ratio n

of strongest columns for m ¼ 3 (triangular cross-section), parabolic taper, and clamped–clamped end are
b1 ¼ 4:929 and n ¼ 0:836 as shown in the legend.

The section ratios n and buckling load parameters b1 of the strongest columns for the parabolic and
sinusoidal taper by side number m are summarized in Table 2. Compare the result for parabolic taper, m ¼ 3,
n ¼ 1:973, hinged–hinged end and ðb1Þcritical ¼ 1:572 corresponding to Keller’s ‘‘optimal’’ column taper. Keller
[3] obtained ðb1Þcritical � 1:6 for the hinged–hinged end. Thus, the parabolic taper with m ¼ 3 (triangular cross-
section) and n ¼ 1:973 obtained herein is almost the optimal column with hinged–hinged end. It is found that
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Table 2

Configuration of strongest columns for parabolic and sinusoidal tapers

Taper type End constraint m n b1

Parabolic taper Clamped–clamped end 3 0.836 4.929

4 0.836 4.269

5 0.836 4.146

N 0.836 4.076

Clamped–hinged end 3 1.174 2.503

4 1.174 2.167

5 1.174 2.105

N 1.174 2.070

Hinged–hinged end 3 1.973 1.572

4 1.973 1.362

5 1.973 1.322

N 1.973 1.300

Sinusoidal taper Clamped–clamped end 3 0.854 4.904

4 0.854 4.247

5 0.854 4.125

N 0.854 4.056

Clamped–hinged end 3 1.183 2.507

4 1.183 2.171

5 1.183 2.108

N 1.183 2.073

Hinged–hinged end 3 1.850 1.558

4 1.850 1.349

5 1.850 1.310

N 1.850 1.288
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Fig. 3. b1 versus n curves by taper type with clamped–clamped end.
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the section ratios n of strongest columns are the same regardless of side number m when the taper type and end
constraint are remaining constant.

The effect of taper type on the buckling load parameter for the clamped–clamped end is presented in Fig. 3.
The difference between the solid (parabolic taper) and dashed (sinusoidal taper) curves becomes higher as the
section ratio n gets higher value. The difference between two curves for clamped–hinged and hinged–hinged
ends, not presented in this paper, becomes more pronounced comparing that of clamped–clamped end.

5. Concluding remarks

The numerical methods developed herein for computing buckling loads of solid tapered columns with
regular polygon cross-section and constant volume are found to be especially robust and reliable over a wide
and practical range of system parameters. Differential equation governing the buckled shape of column is
derived. The parabolic and sinusoidal tapers are chosen as the variation taper. The equation is numerically
solved using the Runge–Kutta method and the determinant search method for numerical integration and
calculating the eigenvalue, respectively. The numerical results obtained in this study agree quite well with those
published in references. According to the variation of non-dimensional system parameters of the columns, the
buckling load parameters are reported, and the configurations of strongest columns are also determined.
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